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We construct an approximate renormalization scheme for Hamiltonian systems
with two degrees of freedom. This scheme is a combination of Kolmogorov�
Arnold�Moser (KAM) theory and renormalization-group techniques. It makes
the connection between the approximate renormalization procedure derived by
Escande and Doveil and a systematic expansion of the transformation. In par-
ticular, we show that the two main approximations, consisting in keeping only
the quadratic terms in the actions and the two main resonances, keep the essen-
tial information on the threshold of the breakup of invariant tori.

KEY WORDS: KAM theory; renormalization group; invariant tori; non-
trivial fixed point.

I. INTRODUCTION

In 1981, Escande and Doveil(1) set up an approximate renormalization
scheme for Hamiltonian systems with two degrees of freedom, in order to
study the breakup of invariant tori, and especially to compute the
threshold of stochasticity. Their scheme was motivated by Chirikov's
resonance overlap criterion, (2) and by Greene's results(3) about the link
between the existence of a torus with the stability of neighboring periodic
orbits. They established the relevance of a sequence of these periodic orbits
for the breakup of invariant tori, by setting an approximate transformation
which focuses successively on smaller scales, i.e., acting like a microscope
in phase space.
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Due to the complexity of the phase space of a non-integrable
Hamiltonian, their method requires strong approximations to obtain
explicit expressions. Basically, two approximations were involved:

(1) a quadratic approximation in the actions: their transformation
produces terms that are higher than quadratic in the actions; in
order to remain in the same class of Hamiltonians, they neglect
these higher order terms,

(2) a two-resonance approximation: they only keep the two main
resonances at each iteration of the transformation.

The idea was to keep only the most relevant features of the mechanism
of the breakup of a given torus.

In this article, we construct an approximate scheme using the same
two approximations. We establish the connection between Escande's
scheme(1, 4) and the KAM-RG transformation derived in refs. 5�7. The aim
is to show that an exact renormalization transformation can be approxi-
mated by a simple transformation: It can be useful to derive approximate
explicit expressions of universal parameters, and to see what are the most
relevant terms responsible for the breakup of invariant tori. The results we
obtain support the general idea that the irrelevant terms of the renor-
malization transformation can be eliminated with little loss of accuracy in
the parameters associated to the breakup of invariant tori.

The transformation R we define has two main parts: a KAM transfor-
mation which is a canonical change of coordinates that reduces the size of
the perturbation from = to =2, and a renormalization transformation which
is a combination of a shift of the resonances and a rescaling of momentum
and energy.

It acts on the following class of Hamiltonians with two degrees of
freedom, quadratic in the action variables A=(A1 , A2), and described by
three even scalar functions of the angles .=(.1 , .2):

H(A, .)= 1
2 (1+m(.))(0 } A)2+[|0+ g(.) 0] } A+ f (.) (1.1)

where m, g, and f are of zero average. The vector |0 is the frequency vector
of the considered torus and 0=(1, :) is some other constant vector not
parallel to |0 . The perturbation (m, g, f ) is of order O(=).

The renormalization-group approach is based on the following general
picture: The idea is to construct the transformation R as a generalized
canonical change of coordinates acting on some space of Hamiltonians
such that the iteration of R converges to a fixed point. If the perturbation
is smaller than critical, R should converge to a Hamiltonian of type
(1.1) with (m, g, f )=0, which is integrable, and the equations of motion
show that the torus with frequency vector |0 is located at A=0. All
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Hamiltonians attracted by this trivial fixed point have an invariant torus of
that frequency (this can be considered as an alternative version of the
KAM theorem(8)). If the perturbation is larger than critical, the system
does not have a KAM torus of the considered frequency and the iteration
of R diverges. The domain of convergence to the trivial fixed point and the
domain of divergence are separated by a critical surface invariant under the
action of R. The main hypothesis of the renormalization-group approach
is that there should be another nontrivial fixed point (or more generally, a
fixed set) on this critical surface, that is attractive for Hamiltonians on that
surface. From its existence, one can expect to deduce universal properties
in the mechanism of the breakup of invariant tori.

Many aspects of this general picture are still at the stage of conjecture,
supported by some results in the perturbative regime, (8) by numerical
works(6, 7, 9, 10) and by analogies with the related problem for area-preserving
maps.(11, 12) In particular, the relation between the properties of the non-
trivial renormalization fixed point and the geometric properties of the
invariant torus at the instability threshold are not well established. The
coincidence of the critical coupling of one-parameter families at which a
torus breaks up, with the boundary of attraction of the trivial fixed point
is supported by numerical studies.(6, 7, 9)

In Section II, we describe the KAM part of the transformation, and we
make explicit the two approximations involved in this scheme: the quadratic
approximation and the two-resonance approximation. In Section III, we
present the renormalization transformation which is a combination of the
KAM part, a shift of the resonances, and rescalings of actions and energy.
In Section IV, we give our numerical results, and in particular, we show that
the approximate scheme contains the essential features of the exact one.

II. KAM TRANSFORMATION

We perform a canonical transformation UF : (., A) [ (.$, A$) defined
by a generating function F(A$, .) (13, 14) characterized by a scalar function X
of the action and angle variables, of the form

F(A$, .)=A$ } .+X(A$, .) (2.1)

leading to

A=
�F
�.

=A$+
�X
�.

(2.2)

.$=
�F
�A$

=.+
�X
�A$

(2.3)
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The function X is constructed such that in H b UF the perturbation terms of
first order in = are equal to zero. Inserting Eq. (2.2) into Hamiltonian (1.1),
one obtains the expression of the Hamiltonian in the mixed representation
of new action variables and old angle variables:

H� (A$, .)=(0 } A$)2�2+|0 } A$+|(A$) }
�X
�.

+h(A$, .)+O(=2) (2.4)

where

|(A$)=|0+(0 } A$) 0 (2.5)

h(A$, .)= 1
2m(.)(0 } A$)2+ g(.) 0 } A$+ f (.) (2.6)

The equation that determines X is thus:

|(A$) }
�X
�.

+h(A$, .)=0 (2.7)

We recall that the functions m, g, and f are of order O(=); as a consequence,
X is also of order O(=). Equation (2.7) has the solution

X(A$, .)= :
& # Z2

X&(A$) sin(& } .) (2.8)

where, if we write h(A, .)=�& h&(A) cos(& } .),

X&(A$)=&
h&(A$)

|(A$) } &
(2.9)

The denominator of X& depends on the actions: thus, by power expan-
sion, it generates terms that are higher than quadratic in the actions. In
order to remain in the same space of Hamiltonians (1.1), we expand the
Hamiltonian to the second order in the actions and neglect the order
O(A3). The justification for such an approximation is that we are interested
in the torus with frequency vector |0 which is located at A=0 for the tri-
vial fixed point.

We consider Hamiltonians (1.1) with only two Fourier modes which
are the two main resonances defined as follows: For a frequency vector |0 ,
the resonances are given by the vectors &n=( pn , qn) which are the
sequence of the best rational approximations. They are characterized
precisely by the following property: ||0 } &n |<||0 } &|, for any &#( p, q){
&n such that |q|<qn+1 . For the frequency vector |0=(1�#, &1) with #=
(1+- 5)�2, we define the two main resonances as &1=(1, 0) and &2=(1, 1).
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Well known properties of continued fractions (see, for example, ref. 15)
imply that the vectors &n satisfy the recursion relation &n+1=N&n , where
N=( 1 1

1 0).
The scalar functions m, g and f will have expressions of the form

f (.)= f&1
cos(&1 } .)+ f&2

cos(&2 } .) (2.10)

The KAM part of the transformation R will generate a large set of Fourier
modes from these two main resonances. The purpose of the renormaliza-
tion is to relate these two main resonances representing the main scale, to
the next pair of resonances (called the daughter resonances) representing
the next smaller scale. For the frequency vector |0=(1�#, &1), the
daughter resonances are &3=(2, 1) and &4=(3, 2). As the canonical trans-
formation (2.2)�(2.3) is linear in cos(& } .) and sin(& } .), &n=&n&1+&n&2

and the three scalar functions (m, g, f ) are of order O(=), the lowest order
to which the resonances &3 and &4 are produced, is respectively O(=2) and
O(=3). Thus we neglect the order O(=4) of the KAM transformation.

The next step is to express the Hamiltonian in the new angle variables
using Eq. (2.3). We notice that this equation has to be inverted. As we need
the Hamiltonian expressed in the new coordinates to order O(=3), we have
to invert Eq. (2.3) up to order O(=), since the functions to be expressed in
the new angles are already of order O(=2). Moreover, these new angle
variables depend on the actions, which we develop to order O(A2). The
development can thus be summarized by expressing cos[& } .(.$)] as a
function of cos(& } .$) and sin(& } .$), neglecting the orders O(=2, A3).

The final step is a translation in the A$ variables such that the average
of the linear term is again of the form |0 } A$.

The Hamiltonian expressed in the new variables becomes:

H$(A$, .$)= 1
2 (4+m$(.$))(0 } A$)2+(|0+ g$(.$) 0) } A$+ f $(.$) (2.11)

where m$, g$ and f $ are given as functions of m, g and f. The constant 4
results of the fact that the mean value of m$ is required to be equal to zero.
We notice that the KAM transformation does not change 0=(1, :).

The two-resonance approximation consists in retaining only the two
daughter resonances and neglect all the other Fourier modes. Therefore the
approximate KAM transformation U� F is a map acting on a low-dimen-
sional space of Fourier coefficients:

U� F (1; m&1
, g&1

, f&1
; m&2

, g&2
, f&2

)=(4; m$&3
, g$&3

, f $&3
; m$&4

, g$&4
, f $&4

) (2.12)

The explicit expression of this map is given in the Appendix.
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III. RENORMALIZATION TRANSFORMATION

We construct the approximate transformation by combining two
parts: a KAM transformation (m, g, f, :) [ (m$, g$, f $, :) as defined above,
and a renormalization (RG) consisting of a shift of the resonances and a
rescaling of the actions and of time (m$, g$, f $, :) [ (m", g", f ", :$). The
renormalization scheme described in this section is for a torus of frequency
vector |0=(1�#, &1) where #=(1+- 5)�2. It is straightforward to adapt
it to quadratic irrationals.

The approximate KAM-RG transformation is composed of four steps:

(1) a KAM transformation described in the previous section, which
is a change of coordinates that eliminates terms of order O(=),
where = is the size of the perturbation; this transformation
produces terms of order O(=2), terms that are higher than qua-
dratic in the actions, and a large set of Fourier modes. We neglect
terms of order O(A3, =4), and also, all the Fourier modes except
the two daughter resonances &3 and &4 . We notice that this trans-
formation does not change 0.

(2) a shift of the resonances: a canonical change of coordinates that
maps the pair of daughter resonances (&3 , &4) into the two main
resonances (&1 , &2).

(3) a rescaling of energy (or equivalently of time).

(4) a rescaling of the action variables (which is a generalized canoni-
cal transformation).

The aim of this transformation is to treat one scale at the time. The
steps (2), (3) and (4) are implemented as follows: The two main resonances
(1, 0) and (1, 1) are replaced by the next pair of daughter resonances (2, 1)
and (3, 2), i.e., we require that cos[(2, 1) } .$]=cos[(1, 0) } ."] and
cos[(3, 2) } .$]=cos[(1, 1) } ."]. This change is done via a canonical trans-
formation (A$, .$) [ (N&2A$, N 2.$) with

N2=\2 1
1 1+

This linear transformation multiplies |0 by #&2 (since |0 is an eigenvector
of N ); therefore we rescale the energy by a factor #2 in order to keep the
frequency fixed at |0 . A consequence of the shift of the resonances is that
0 is changed into 0$=(1, :$), where :$=(:+1)�(:+2).
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Then we perform a rescaling of the action variables: we change the
Hamiltonian H$ into

H� $(A$, .$)=*H$ \A$
*

, .$+
with * such that Hamiltonian (2.11) becomes of the form (1.1). Since the
rescaling of energy and the shift N2 transform the quadratic term of the
Hamiltonian into #2(2+:)2 [4+m$(.$)](0$ } A$)2�2, this condition leads
to *=#2(2+:)2 4. This condition has the following geometric interpreta-
tion in terms of self-similarity of the resonances close to the invariant torus:
the rescaling magnifies the size of the daughter resonances, and places them
approximately at the location of the original main resonances.(7)

In summary, the renormalization rescales m, g, f and 0=(1, :) into

m"(.)=
m$(N&2.)

4
(3.1)

g"(.)=#2(2+:) g$(N &2.) (3.2)

f "(.)=#4(2+:)2 4f $(N&2.) (3.3)

:$=
1+:
2+:

(3.4)

The iteration of the transformation (3.4) converges to :
*

=#&1. It means
that 0 converges under successive iterations to 0

*
=(1, 1�#), which is

orthogonal to |0 and is the unstable eigenvector of N 2 with the largest
eigenvalue #2.

IV. DETERMINATION OF THE CRITICAL COUPLING;
AN APPROXIMATE NONTRIVIAL FIXED POINT

We start with the same initial Hamiltonian as in refs. 4, 6, and 7

H(A, .)= 1
2 (0 } A)2+|0 } A+=f (.) (4.1)

where 0=(1, 0), |0=(1�#, &1), #=(1+- 5)�2, and a perturbation

f (.)=cos(&1 } .)+cos(&2 } .) (4.2)

where &1=(1, 0) and &2=(1, 1).
We take successively larger coupling =, and determine whether the

approximate KAM-RG iteration converges to a Hamiltonian with
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(m, g, f )=0, or whether it diverges (m, g, f ) � �. By a bisection proce-
dure, we determine the critical coupling =c=0.02885. As a comparison,
Escande's scheme(4) gives =c=0.02908. The KAM-RG transformation(6, 7, 9)

yields =c=0.02759 (Greene's criterion gives also =c=0.02759). The two-
resonance scheme gives the result within 50. Thus, the approximate
scheme gives a fairly good description of the critical surface of the breakup
of the torus.

The renormalization operator has two fixed points: a trivial fixed point
which corresponds to the Hamiltonian H(A, .)=(0

*
} A)2�2+|0 } A, and a

nontrivial fixed point which lies on the boundary of the basin of attraction of
the trivial fixed point. The critical surface which is the stable manifold of the
nontrivial fixed point is of codimension 1. The relevant critical exponent is
$=2.7135. This value is close to the one obtained by Escande et al.(16)

$=2.7480, or by KAM-RG schemes(9, 10) $=2.6502, and by MacKay for
area-preserving maps(11) $=2.6502.

The fact that $ is close to #2 can be understood by the following
heuristic arguments: To the first main resonance &1 corresponds a Fourier
component M exp[i(1, 0) } .], and to the second one P exp[i(1, 1) } .].
The first daughter resonance &3 is represented by M$ exp[i(2, 1) } .]. The
transformation is a polynomial change of coordinates that generates a set
of Fourier modes from the two main resonances. The way to generate the
first daughter resonance at the lowest order is to combine one resonance &1

and one resonance &2 . For the second daughter resonance, the change of
coordinates must combine one resonance &1 and two resonances &2 . We
rescale the phase space in such a way that the daughter resonances become
of the same size as the main resonances. These arguments give the following
renormalization relations:

M$=k1MP (4.3)

P$=k2MP2 (4.4)

where k1 and k2 are two constants that depend on how the transformation
is performed.

An analysis of this scheme shows that it has two fixed points: a trivial
one M=0, P=0 and a nontrivial one M

*
=k1k&1

2 , P
*

=k&1
1 . The non-

trivial fixed point has a stable manifold of codimension 1 characterized by
a relevant critical exponent; the only eigenvalue greater than one of the
linearized map at the nontrivial fixed point is $=#2. This relevant critical
exponent does not depend on k1 and k2 . This is in agreement with the
general ideas of the renormalization group. Also, it shows that the relevant
critical exponent of the approximate and exact KAM-RG transformation
should be expected to be close to #2.
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Table I. Universal Parameters Associated with the Breakup of
the Golden Mean Torus

Name Valuea Approximate scheme Simple schemeb

Unstable eigenvalue 2.6502 2.7135 #2
r2.6180

Largest stable eigenvalue 0.3731 0.4087 #&2
r0.3820

Area multiplier ** 18.8282 19.1248 #6
r17.9443

Inverse mass multiplier 4* 1.0493 1.0658 1
Time multiplier #&2 #&2 #&2

a Given in refs. 12 and 4.
b Derived in refs. 4 and 16.

For the scaling factor at the nontrivial fixed point, we obtain numeri-
cally *

*
=19.1248. This value can be compared with *

*
=18.8282 obtained

in refs. 17, 18, 11, 9, and 10. Table I lists some of the universal parameters
associated with the breakup of golden tori.

The approximate renormalization transformation has another fixed set
which is a cycle of period three as it had also been encountered in area-
preserving maps(12, 19) and in the KAM-RG transformation.(7) This cycle is
simply related to the nontrivial fixed point by symmetries. In particular, it
belongs to the same universality class as the fixed point.

APPENDIX: TWO-RESONANCE SCHEME FORMULAE

We denote c&=cos(& } .), c$&=cos(& } .$), and s$&=sin(& } .$). The
expression of the Hamiltonian in the mixed representation of new actions
and old angles is

H� (A$, .)= 1
2 (0 } A$)2+|0 } A$+ :

&1 , &2

P&1&2
(A$) c&1

c&2

+ :
&1 , &2 , &3

Q&1&2&3
(A$) c&1

c&2
c&3

(A1)

where

P&1&2
(A)=0 } &1X&1

(A)[0 } &2 X&2
(A)�2+ g&2

+m&2
0 } A] (A2)

Q&1&2 &3
(A)=0 } &10 } &2X&1

(A) X&2
(A) m&3

�2 (A3)

We recall that X is of order O(=), and is given by Eq. (2.9); as a conse-
quence, P is of order O(=2), and Q is of order O(=3).
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Next, the expression of this Hamiltonian in the new angles requires the
inversion of Eq. (2.3) to the order O(=). The expression of c& as a function
of s$& and c$& is

c&1
=c$&1

+:
&2

R&1&2
(A$) s$&1

s$&2
+O(=2) (A4)

where R&1 &2
(A)=&1 } (�X&2

��A).
The Hamiltonian (1.1) expressed in the new variables becomes

H$(A$, .$)= 1
2 (0 } A$)2+|0 } A$+ :

&1 , &2

P&1&2
c$&1

c$&2
+ :

&1 , &2 , &3

Q&1&2&3
c$&1

c$&2
c$&3

+ :
&1 , &2 , &3

(P&1&2
+P&2 &1

) R&2&3
c$&1

s$&2
s$&3

+O(=4) (A5)

The next approximation is the Taylor expansion of H$(A$, .$) to the
second order in the actions, e.g.,

P&1&2
(A)=P (0)

&1&2
+P (1)

&1&2
0 } A+P (2)

&1&2
(0 } A)2+O(A3) (A6)

In the next step, we neglect all the resonances different from the daughter
resonances (2, 1) and (3, 2) using the following relations

c$&1
c$&2

= 1
2 (c$&1+&2

+c$&1&&2
) (A7)

c$&1
s$&2

s$&3
= 1

4 (c$&1+&2&&3
+c$&1&&2+&3

&c$&1+&2+&3
&c$&1&&2&&3

) (A8)

c$&1
c$&2

c$&3
= 1

4 (c$&1+&2&&3
+c$&1&&2+&3

+c$&1+&2+&3
+c$&1&&2&&3

) (A9)

In the following formulas, the subscripts 1, 2, 3 and 4 denote respectively
the resonances (1, 0), (1, 1), (2, 1), and (3, 2). The Hamiltonian (4.9)
becomes

H$(A$, .$)= 1
2 (0 } A$)2+|0 } A$+ 1

2 (P11+P22)

+ 1
2 (P12+P21) c$&3

+ 1
4 (Q221+Q212+Q122&S122) c$&4

(A10)

where S122=2P22R21+(P21+P12)(R12+R22).
We now make a translation in the A$ variables, so that the average of

the linear term is again of the form |0 } A$. Since the translation is of order
O(=2), the coefficients of c$&3

and c$&4
in Eq. (4.14) will change by terms of

order O(=4), that we consistently neglect. Hence we get the following
expressions for 4 and the Fourier coefficients of the daughter resonances
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4=1+P (2)
11 +P (2)

22 (A11)

m$&3
=P (2)

12 +P (2)
21 (A12)

m$&4
= 1

2 (Q (2)
221+Q (2)

212+Q (2)
122&S (2)

122) (A13)

g$&3
= 1

2 (P (1)
12 +P (1)

21 ) (A14)

g$&4
= 1

4 (Q (1)
221+Q (1)

212+Q (1)
122&S (1)

122) (A15)

f $&3
= 1

2 (P (0)
12 +P (0)

21 ) (A16)

f $&4
= 1

4 (Q (0)
221+Q (0)

212+Q (0)
122&S (0)

122) (A17)
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